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Abstract. We study the propagation of a disease in a population where agents are charac-
terized by their awareness level, representing the measures they take to avoid the infection.
We introduce another agent, the government, which is constantly sending a message to the
population trying to steer the mean awareness to a value which should ensure the extinction
of the disease. We propose three levels to analyze this model. First, an agent-based model,
which we use later to derive a mean-field system of ordinary differential equations; and finally,
we propose a kinetic approach to model the evolution of the distribution of agents on the
awareness levels. We obtain a nonlinear ODEs-PDE system, where a first order, non-local-
partial differential equation is coupled with two ordinary differential equations that describe
the evolution of the epidemic and the response of the government. We prove the existence
and uniqueness of solutions.

1. Introduction

When affected by a new disease, a population can adopt atypical social behaviours, like
social distancing, lock-downs, school closures, and many other measures in order to control
the spread of the disease. This is a well-documented phenomena, that are we experiencing
now, and can be traced back at least to the Plague of Athens described by Thucydides. Those
behavioral changes affect the dynamic of the disease, which in turn induces changes on the
social habits of the population. The study of the disease dynamic must take into account
the social response of the population, giving rise to an irreducible complex human-disease,
according to [5].

However, classical mathematical models of diseases dynamics, like the seminal work of
Kerman-MacKendrick in the Susceptible - Infected - Recovered (SIR) model and its numerous
variants, usually neglect the social aspect of the problem. Up to the authors knowledge, the
first paper taking into account explicitly the social impact of disease control measures seems
to be [10]. Since then, increasing attention has been given to the modelling of the complex
human-disease, resulting in a new field of research named behavioral epidemiology, we refer to
the survey [6] for more information, and see also [29].

During the Covid-19 pandemic, in the absence of a vaccine, most governments relied on
policies that aimed at reducing contacts between individuals, and at raising hygiene levels
by the so-called barrier gestures so as to lower the infection rate. Thus, it is important to
model such government health policies and their impact on the population to predict the
future dynamics of the disease and evaluate their efficiency. In fact, this issue is one the nine
challenges in behavioral epidemiology identified in [16].
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Disease dynamic is traditionally studied by dividing the population in compartments. The
evolution of the proportion of individuals in each compartment is then given by a a system
of ordinary differential equations (ODEs) that can be studied numerically and theoretically
by using tools from dynamical systems theory. The most well-known compartments models
are the SIR and SIS, Susceptible - Infected -Susceptible models. In this framework the impact
of media or government policy is incorporated either by assuming that the transition rates
between compartments (in particular, the contact rate) depends on the proportion of infected
individuals, or by adding new compartments for the aware individuals. Also, when the me-
dia or the government propagates a signal, the frequency or intensity of their announces is
obtained from an extra ordinary differential equation, which increases when the number of
cases rises or people does not obey the instructions, and is constrained by budget restrictions
and the capacity of attention of the individuals, see [20], and also [28] for a recent survey.

This approach has proven useful but has some drawbacks: first, the population is assumed
to be homogeneous, and second, it allows only for a crude coarse-grained approach of the
social dynamic since only a few compartments are used to model the social heterogeneity.

On the other hand, the computational power available nowadays allows first to consider
models which keep track of the state of each individual at any time, and also to model
interactions (both infections and social processes) on a microscopic level [9, 12, 15, 30].

In that setting an individual is usually characterized by its state with respect to the disease
(susceptible or infected), and by another parameter, its awareness, quantifying its knowledge
of the disease and the measures taken to avoid contagion. Interactions between agents lead to
a co-evolution of the disease status and the awareness, in agreement with the human disease
paradigm. These Agents-Based Models (ABM) are thus very realistic but also computation-
ally intensive. In the particular case where any pair of agents can interact, it is possible to
obtain a mean-field description of the dynamic with a system of ordinary differential equations,
as obtained recently in [18].

The evolution of the (individual) awareness parameter is governed by social interactions
and also by the dynamics of the disease, and its modelling can thus take advantage of the
vast literature concerning the opinion formation process. From a mathematical point of view,
a kinetic approach has been proven useful in studying the time evolution of the distribution
of opinions in a population (see e.g. [2, 21, 22, 23, 26, 27] and references therein). In that
framework the distribution of agents is a probability measure over the space of available
opinions that evolves following a Boltzmann type equation. In some cases, its time evolution
can be approximated by a Fokker-Planck equation. In particular, the presence of stubborn
agents that refuse to implement protection measures can be studied as in [24].

Kinetic equations were used in the recent paper [11] where a SIR models is developed
considering that each individual is characterized by its contact rate. Thus, the distribution
of individual contact rates in the susceptible, infected and recovered subpopulation satisfies a
system of partial differential equations. However, the contact rates remained unchanged. Also,
in [1, 7] the authors used the kinetic approach of active particles to model the heterogeneity
of agents respect to viral load and protection measures among others.

In our work we study the propagation of a disease in a population where individuals are
willing to adjust their awareness level following the recommendation of a government institu-
tion, and the government in turn constantly sends a public message to the population aiming
at an awareness value which should be enough to obtain the extinction of the epidemic. In
Section §2 we present the precise rules of interaction, we derive the finite-dimensional mean
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field equations, and we study the stability of the equilibria. Section §3 is devoted to the kinetic
model and we get a Boltzmann type equation coupled with the SIS model and the government
adjustment of the signal. We prove the existence and uniqueness of solutions by following the
ideas of Bressan [8], see also [3], by considering the system as an abstract ordinary differential
equation in a subset of a Banach space. Moreover, we perform the so-called grazing limit
and we obtain an ODEs-PDE system, by replacing the Boltzmann equation by a first order,
non-local partial differential equation for the distribution of agents in the awareness levels.
Also, we add stubborn agents, and we analyze their impact on the existence of an endemic
equilibria where the disease persists. The proof of the main theorems in Section §3 are given
in Appendix A to D, for the ease of the presentation, due to the technical details involved.
Finally, in Section §4 we conclude the paper and analyze possible extensions.

2. Description of the model and analysis of the mean-field equations.

2.1. Description of the model. We consider a population of N agents in which the spread-
ing of a disease, modelled by a standard SIS model. We denote α and β the contagion and
recovery rates. Thus, contagion and recovery occur following a Poisson process with rates
α and β. It is well known that in a large well-mixed population the mean proportion I of
infected agents satisfies the ordinary differential equation

(2.1)
d

dτ
I = αI(1− I)− βI.

We modify this model assuming that each individual is characterized by a level of awareness
a ≥ 0 modelling its knowledge about prevention measures against the disease. An individual
with awareness a ' 0 has a high probability of getting infected after contact with an infected
individual. On the other hand an individual with high awareness a� 0 takes almost all the
necessary precautions to avoid contagion. We model this intuition in the following way. A
healthy individual with awareness a interacts in a time interval dt with an infected agent and
becomes infected with probability αe−adt. We denote a1, . . . , aN the awareness level of each
of the N individuals in the population. We will see below that the mean proportion I of
infected agents satisfies the equation

(2.2)
d

dτ
I = α〈e−a〉I(1− I)− βI,

where 〈e−a〉 = 1
N

∑N
i=1 e

−ai is the mean value of e−a in the population at time t.
We suppose that the awareness levels of the agents can change in time due to the influence

of public policy. We assume that a government is continuously sending a message W (t) to
the whole population to drive the individual awareness level ai(t), i = 1, . . . , N , to some level
a∗ chosen to ensure the extinction of the disease. To determine a∗, recall that in the basic
SIS model we have limt→+∞ I(t) = 0 if and only if the basic reproduction number R0 := α/β
is less than or equal to 1. If all individuals have awareness level ai = a∗, i = 1, .., N , then
the basic reproduction number for (2.2) is αe−a

∗
/β. The threshold for the extinction of the

disease is then αe−a
∗
/β = 1, i.e.

(2.3) a∗ = log
(α
β

)
.
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From a practical point of view it will be more convenient for the government to try to drive
the population’s awareness to a value strictly greater than a∗ when α > β, say a∗δ := a∗ + δ
for some δ > 0. When α < β, we will take δ so that a∗δ = a∗.

We model the evolution of the government message W (t) with the equation

(2.4) W ′(t) = W (t)
(
ρI(t) + σ(a∗δ − 〈a〉)t + η(a∗δ −W (t))

)
,

where ρ, σ, η, δ > 0 are fixed positive parameters, and 〈a〉t = 1
N

∑N
i=1 ai(t) is the mean value of

awareness in the population at time t. Observe that the rate of change of the signal strength
grows proportionally to three factors: the proportion of infected agents ρI(t), the difference
between the desired value a∗δ and the mean awareness level in the population 〈a〉t, and the
difference between the desired value a∗δ and the current government message W (t).

We assume that interactions with the government occur with unit rate and that, upon
interaction, each individual i is willing to comply to the government recommendation in the
sense that it will modify its awareness level to

ai(t+ dt) = ai(t) + γdt(W (t)− ai(t))

where γ > 0 models the strength of the commitment of the individuals to comply. Notice
that, when ai > W , then ai decreases thus getting closer to W .

The complete agent-based dynamic is given by the following algorithm where we denote
si ∈ {0, 1} the status of agent i (si = 1 if infected, si = 0 if not).

Algorithm 1: Agent based dynamic

Data: time step dτ , number of time steps Nτ ,
modelling parameters α, β, δ, γ, ρ, σ, η.

Result: a1, . . . , aN , s1, . . . , sN ,W at time kdτ , k = 0, . . . , Nτ .
initialization of a1, . . . , aN , s1, . . . , sN ,W .
for τ ← 1 to Nτ do

for k ← 1 to N do
select an agent i at random.

a′i = ai + γdτ(W − ai);
select two distinct agents i and j at random.
if si = 0 and sj = 1 and rand < αe−aidτ then

s′i = 1

select an agent i at random.
if si = 1 and rand < βdτ then

s′i = 0;

Update.

Save a1, . . . , aN , s1, . . . , sN .
Compute 〈a〉 = 1

N

∑
i ai, I = 1

N

∑
i si, and

W ←W + dτW (ρI + σ(a∗δ − 〈a〉) + η(a∗δ −W ))

Here, rand denotes a number drawn at random from the uniform distribution in [0, 1].

We show in Figure 1 the time evolution of the proportion I(t) of infected agents, the
government message W (t), the mean awareness level 〈a〉 = 1

N

∑
i ai, and a∗δ , using the agent
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Figure 1. Left panel: Time evolution of I(t), W (t), and 〈a〉 = 1
N

∑
i ai,

using Algorithm 1 with parameters (2.5). Right panel: Time evolution of the
awareness levels a1, . . . , aN ; the vertical red line is a = a∗δ . Top row: initial
proportion of infected agents 0.9, bottom row: 0.2

based model described in Algorithm 1 with parameters (2.5):

(2.5) α = 0.7, β = 0.1, γ = ρ = σ = η = 0.1, dτ = 0.1, δ = 0.01.

In the right panel we plot the time evolution of the distribution of awareness levels a1, . . . , aN .
The vertical red line is a = a∗δ .

We initialize the dynamics as follows: the initial government message is W (0) = 0.01,
and agents awareness levels are randomly chosen with an uniform distribution in [0, 1]. We
considered two initial proportions of infected agents: 0.9 (top row) and 0.2 (bottom row).
Notice that since α > β, the epidemic persists in the clasical SIS model. However, due to the
action of the government, we can see that the disease goes to extinction in our model.

2.2. Mean-field approximation for a large and well-mixed population. We now want
to obtain the differential equations governing the evolution of the proportion I of infected
agents, the government message W and the awareness levels a1, . . . , aN following the algorithm
1.
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The evolution of the government message is given by

d

dτ
W = W (ρI + σ(a∗δ − 〈a〉) + η(a∗δ −W )).

Since any agent i has a probability 1
N to be involved in an interaction, we have for dt� 1

that

ai(t+ dt) ' ai(t) +
dt

N
γ(W (t)− ai(t)).(2.6)

Also, in small time intervals [t, t+ dt] there is a contagion with probability∑
i susceptible

1

N

∑
j infected

1

N − 1
αe−ai(t)dt = αdtI(t)

1

N

∑
i susceptible

e−ai(t).

We denote NS the number of susceptible agents, so that NS/N = 1− I, and the last sum is

(1− I)
1

NS

∑
i susceptible

e−ai(t).

Thus, the contagion probability is approximately

αdtI(t)(1− I(t))
1

NS

∑
i susceptible

e−ai(t).

On the other hand, there is a recovery with probability∑
i infected

1

N
βdt = I(t)βdt.

Thus,

(2.7) I(t+ dt) ' I(t) +
dt

N

{
αI(t)(1− I(t))

1

NS

∑
i susceptible

e−ai(t) − βI(t)
}
.

Notice that the random variables

〈e−a〉Sust=0 :=
1

NS

∑
i susceptible

e−ai(0), 〈e−a〉t=0 :=
1

N

∑
i=1..N

e−ai(0)

have the same distribution since the individual levels a1(0), . . . , aN (0) are independent and
identically distributed. Moreover, the updating rule of ai does not distinguish between infected
and susceptible agents. Since equation (2.7) holds in the mean (i.e., averaging over many
realizations of the dynamic), it is intuitively reasonable to replace 〈e−a〉Sus by 〈e−a〉 thus
obtaining

(2.8) I(t+ dt) ' I(t) +
dt

N

{
α〈e−a〉I(t)(1− I(t))− βI(t)

}
which is Equation (2.2), the one we used to determine a∗. We show in Figure 2 the time
evolution of log(|〈e−a〉Sus − 〈e−a〉|) during a run of the agent simulation. We can appreciate
that 〈e−a〉Sus ' 〈e−a〉.
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Figure 2. Time evolution of the logarithm of the distance between 〈e−a〉 and
〈e−a〉Sus in a simulation of the agent-based model. We observe that this value
reaches the machine epsilon precision.

In view of the factor dt
N in equations (2.6) and (2.8), it is natural to rescale time considering

τ := t/N so that dτ = dt
N (this explains the notation τ used in Algorithm 1). In the limit

dτ → 0, we obtain that a1, . . . , aN , I,W verify the system of ordinary differential equations

d

dτ
I = 〈e−a〉αI(1− I)− βI,

d

dτ
ai = γ(W − ai) i = 1, .., N,

d

dτ
W = W

(
ρI + σ(a∗δ − 〈a〉) + η(a∗δ −W )

)
.

(2.9)

We show in Figure 3 the numerical resolution of this system for the same parameters and
initial condition as those used in the simulation of in Figure 1. Notice that both figures are
nearly indistinguishable confirming that the mean-field system (2.9) adequately captures the
evolution of the agent-based model.

2.3. Analytical results. From now on we denote t for τ . Consider some initial condition
a1(0), .., aN (0) ≥ 0, W (0) ≥ 0, and I(0) ∈ [0, 1]. Then system (2.9) has a unique solution
a1(t), . . . , aN (t),W (t), I(t) defined in an open maximal interval J 3 0. Moreover, it is easily
seen that W (t) ≥ 0 and I(t) ∈ [0, 1] for any t ∈ J . Also, from

d

dτ
W ≤ ηW

(
A−W

)
, A =

ρ

η
+ (1 +

σ

η
)a∗δ

we see that that W (t) ≤ max{W (0), A}. Thus the solution (a1(t), . . . , aN (t),W (t), I(t))
remains bounded so that J = R, i.e. the solution exists for all t ∈ R.

We are interested in the long-time behaviour t→ +∞ of a1(t), . . . , aN (t),W (t), I(t).
The case α < β is simple since I can be controlled by the standard SIS model and thus

I(t)→ 0. No govermnent intervention is needed: W (t)→ 0, and also ai(t)→ 0.

Teorem 2.1. Assume that α < β. Then as t→ +∞,

a1(t), . . . , aN (t)→ 0, W (t)→ 0, I(t)→ 0.
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Figure 3. Numerical solution of the system (2.9) with the same parameters
and initial condition as in Figure 1.

Proof. Since 〈e−a〉St ≤ 1, we have

I ′(t) ≤ αI(t)(1− I(t))− βI(t),

so that I(t) ≤ Isis(t) where Isis solves the standard SIS model:

I ′sis(t) = αIsis(1− Isis)− βIsis, Isis(0) = I(0).

Since α < β, Isis(t)→ 0 and then I(t) ≤ Isis(t)→ 0.
Letting ε(t) := ρI(t) and recalling that a∗δ = a∗ < 0 (because α < β), we have

W ′(t) ≤W (t)(ε(t)− γW (t)).

It follows that W (t) → 0. Otherwise there would exist δ > 0 and a sequence tk ↑ +∞ such
that W ′(tk) = 0 and W (tk) ≥ δ. Then

0 = W ′(tk) ≤W (tk)(ε(tk)− γW (tk)) ≤W (tk)(ε(tk)− γδ)

so that 0 ≤ ε(tk)−γδ and the right hand side is negative for k � 1, a contradiction. A similar
argument shows that ai(t)→ 0, i = 1, . . . , N , and the proof is finished. �

The case α > β is the most interesting one, since the government must act to control the
spreading of the disease. We start its analysis by identifying the equilibria.
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Teorem 2.2. For any α > β and δ > 0, the equilibria (I, a1, . . . , aN ,W ) of (2.9) are the

disease free equilibrium (0, . . . , 0) and (0, a∗δ , . . . , a
∗
δ), and the equilibrium (1− β

α , 0, . . . , 0).

Proof. The proof is straightforward. From (2.9) we have a1 = · · · = aN = W , so that it
remains to solve

I
(

1− β

α
eW − I

)
= 0,

W
(
ρI + (σ + η)(a∗δ −W )

)
= 0.

(2.10)

If W = 0 we obtain I = 0 or I = 1− β
α , thus giving the equilibria (0, .., 0) and (1− β

α , 0, ..., 0).
If W 6= 0 then ρI + (σ + η)(a∗δ − W ) = 0. If I = 0, we obtain the third equilibrium

(0, a∗δ , ..., a
∗
δ). If I 6= 0, we obtain the system (2.11). If δ ≥ 0, this system has no solution.

Indeed, since I > 0 we must have a∗δ −W < 0, i.e. eW > eδ αβ , so that 1 > 1− I = β
αe

W > eδ

which implies δ < 0. The proof is finished. �

In view of the numerical simulations shown in the previous section, we conjecture that, when
δ > 0, then any solution with W (0) > 0 converges as t → ∞ to the disease-free equilibrium
P := (0, a∗δ , . . . , a

∗
δ , a
∗
δ). A linear stability analysis shows that P is the only equilibrium which

is locally asymptotically stable when δ > 0. We still suppose that α > β.

Teorem 2.3. The equilibria (0, ..., 0) and (1− β
α , 0, . . . , 0) are unstable. Moreover, by denoting

A the linearized matrix of (2.9) around the disease-free equilibrium P := (0, a∗δ , . . . , a
∗
δ , a
∗
δ),

then there exists a constant C > 0 independent of N such that for any N all the eigenvalues
of A belong to {z ∈ C : Re(z) < −C}. In particular, P is locally asymptotically stable for
any δ > 0 and any N ≥ 1.

Proof. See Appendix A. �

Remark 2.1. When δ < 0, the equilibria of the system are the three equilibria of Theorem
2.2, which are unstable, and a fourth equilibrium (i∗, w∗, ..., w∗) (existing only if δ < 0) where
(i∗, w∗) is the unique solution of the system

1− β

α
eW = I,

ρI + (σ + η)(a∗δ −W ) = 0.
(2.11)

Indeed, if δ < 0, system (2.11) has a unique solution since the function

f(i) := ρi+ (σ + η)

(
a∗δ − ln

(α
β

(1− i)
))

is increasing with f(0) < 0 and f(1 − β/α) > 0. Thus there exists a unique i∗ such that

f(i∗) = 0 and i∗ ∈ (0, 1− β/α), in particular w∗ = ln
(
α
β (1− i)

)
> 0. Notice that (i∗, w∗) ∈

(0, 1− β/α)× (0,+∞).
We conjecture that this equilibrium is asymptotically stable as illustrated in Figure 4 which

displays a run of the dynamic with parameters (2.5) being δ = −0.01, and I(0) = 0.2, W (0) =
0.01.

Recall that 1−β/α is the asymptotic proportion of infected individuals in the endemic state
of the classical SIS model. Since i∗ < 1− β/α we see that the government action succeeds in
lowering the limit proportion of infected individuals as compared with the SIS model.
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Figure 4. Numerical resolution of the system 3 with same parameters and
initial condition as in Figure 1, with δ = −0.5. The horizontal lines correspond
to (i∗, w∗) of system (2.11).

If we suppose that the social dynamic is much faster than the disease dynamic, i.e. γ � 1,
then all agents follow quickly the government directions. Formally ai = W for all i = 1, . . . , N ,
and we can reduce system (2.9) to:

d

dτ
I = 〈e−W 〉αI(1− I)− βI,

d

dτ
W = W

(
ρI + (σ + η)(a∗δ −W )

)
.

(2.12)

We can prove now:

Proposition 2.4. For any initial condition (W0, I0) with W0 > 0 and I0 ∈ (0, 1], the corre-
sponding solution (W (t), I(t)) of (2.12) converges to (aδ∗, 0) as τ → +∞.

Proof. We divide the quadrant Q := {(W, I), W > 0, I > 0} in the three zones I, II and III
defined by

I = {(W, I) ∈ Q : 〈e−W 〉α(1− I)− β > 0},
III = {(W, I) ∈ Q : ρI + (σ + η)(a∗δ −W ) < 0},
II = Q\(I ∪ III).

Notice that the vector-field defining the right hand side of (2.12) points inside III in the
line {(W, I) ∈ Q : ρI + (σ + η)(a∗δ − W ) = 0} so that III is invariant. In III, a solution
(W (t), I(t)) verifies I ′,W ′ < 0 with I > 0, W > a∗δ , so that the limit limt→+∞(W (t), I(t))
must exists. This limit must be an equilibrium belonging to III, i.e. (a∗δ , 0).

It is easily seen that if a solution starts from I, it must pass to II in finite time. If then
it passes to III then we are done. Otherwise, if it stays in II for t � 1, then since I ′ < 0
and W ′ > 0 it must converges to the unique equilibrium in II which is (a∗δ , 0). The proof is
finished. �
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3. The kinetic approach and the influence of stubborn agents.

Up to now we supposed that all agents were willing to comply with the government rec-
ommendations. However it is well-known that not all individuals respond in the same way to
public policy as the public demonstrations of opposition to quarantine and barrier gestures
in various countries. To model this, we assume that besides its awareness level a each indi-
vidual is also characterized by an additional parameter q ∈ [0, 1] that models its volatility or
willingness to change its mind. When interacting with the government at time t an agent will
now modify its awareness level a as

(3.1) a→ a+ qγ(W (t)− a)

Notice that individual with q = 0 are stubborn or zealots in the sense that they do not follow
the government recommendation at all.

Moreover, individuals communicate their opinions, i.e. their awareness level, through inter-
actions with family, friends, colleagues, or neighbors. We assume that these interactions are
binary and occur at the same unit rate as interactions with the government. We also suppose
that the parameter q is not modified during interactions. When an agent with parameters
(a, q) interacts with another agent with parameter (a∗, q∗), it will modify only its awareness
level ending up with a post-interaction awareness level a′. We assume that

a′ = a+ qκ(a∗ − a),(3.2)

where κ > 0. Notice once again that stubborn individuals, those that have q = 0, do not
change their awareness level.

We can deduce the corresponding mean-field equations as before modifying (2.6) as

ai(t+ dt) ' ai(t) +
dt

N
qi

{
γ(W (t)− ai(t)) +

∑
j

1

N − 1
κ(aj(t)− ai(t))

}
' ai(t) +

dt

N
qi

{
γ(W (t)− ai(t)) + κ(〈a〉t − ai(t))

}
.

(3.3)

Equations for I and W are the same before. We thus obtain the system

d

dτ
I = 〈e−a〉αI(1− I)− βI,

d

dτ
ai = qi

{
γ(W (t)− ai(t)) + κ(〈a〉t − ai(t))

}
i = 1, .., N,

d

dτ
W = W

(
ρI + σ(a∗δ − 〈a〉) + η(a∗δ −W )

)
.

(3.4)

To get a better understanding of of system (3.4) it is useful to rewrite it in a more compact
way replacing the N equations for d

dτ ai by a single equation. It is a common approach to
model socio-economical phenomena with kinetic equations, see [21].

3.1. A kinetic approach. In this section we propose a kinetic approach to model the in-
teraction between agents between them and with the government. Denote ft the distribution
of the population in the space of parameters (a, q) at time t. Notice that ft is a probabil-
ity measure on [0,+∞) × [0, 1]. Given some function φ : [0,+∞) × [0, 1] → R, the integral
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φ(a, q) dft(a, q) is the mean value of φ due to the population distribution at time t. For

instance taking φ(a) = a this integral is∫
φ(a) dft(a) =

∫
a dft(a) =: 〈a〉

the mean awareness level in the population at time t. Then, taking φ(a) = a2 − 〈a〉2,∫
φ(a) dft(a) = 〈a2〉 − 〈a2〉2 =: V ar(a)

is the variance of a.
It follows from the interaction rules (3.1) and (3.2) that the derivative of

∫
φ(a, q) dft(a, q)

is given by the following Boltzmann-like equation

d

dt

∫
φ(a, q) dft(a, q) =

∫
[φ(a+ qγ(W (t)− a), q)− φ(a, q)] dft(a, q)

+

∫
[φ(a+ qκ(a∗ − a), q)− φ(a, q)] dft(a, q)dft(a∗, q∗)

(3.5)

for any φ ∈ Cb([0,+∞)× [0, 1]).
We keep on modeling the action of the government W (t) and the proportion I(t) of ill

people by (2.9). We thus obtain the system

d

dt
I =〈e−a〉αI(1− I)− βI,

d

dt
W =W

(
ρI + σ(a∗δ − 〈a〉) + η(a∗δ −W )

)
,

d

dt

∫
φ(a, q) dft(a, q) =

∫
[φ(a+ qγ(W (t)− a), q)− φ(a, q)] dft(a, q)

+

∫
[φ(a+ qκ(a∗ − a), q)− φ(a, q)] dft(a, q)dft(a∗, q∗),

(3.6)

where 〈a〉 =
∫
a dft(a, q) and 〈e−a〉 =

∫
e−a dft(a, q) are the mean-values of a and e−a at time

t. Notice that in the particular case ft = 1
N

∑N
i=1 δ(ai,qi) then (3.6) reduces to (3.4).

We first prove the well-posedness of the coupled PDE - ODEs system (3.6). Given some
initial conditions f0 ∈ P ([0,+∞) × [0, 1]), W0 ≥ 0, I0 ∈ [0, 1], a solution to (3.6) is a
triple (f,W, I) with f ∈ C([0,+∞), P ([0,+∞) × [0, 1])) ∩ C1((0,+∞), P ([0,+∞) × [0, 1])),
W ∈ C([0,+∞), [0,+∞)), I ∈ C([0,+∞), [0, 1]) satisfying (3.6) for t > 0 and such that
f|t=0 = f0, W (0) = W0, I(0) = I0. Here P ([0,+∞) × [0, 1]) is endowed with the Bounded
Lipschitz norm (see (B.1)).

We then have:

Teorem 3.1. Consider initial conditions f0 ∈ P ([0,+∞) × [0, 1]), W0 ≥ 0, I0 ∈ [0, 1] where
f0 has compact support. Assume that γ ∈ [0, 1]. Then there exists a unique solution to (3.6).
Moreover there exists R > 0 independent of γ such that supp ft ⊂ [0, R]× [0, 1] for any t ≥ 0.
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3.2. Grazing limit. The study of the long-time behaviour of (3.6) is a difficult problem
mainly because equation (3.5) is non-local. A standard procedure known as quasi-invariant
limit or grazing limit allow us to approximate the non-local equation (3.5) by a transport
equation. To implement this idea, we rescale time and in the new time scale, all the parameters
α, β, γ, κ, ρ, σ, η are multiplied by a small ε. We perform now a first order Taylor expansion
in the equation of ft in (3.6) resulting

1

ε

d

dt

∫
φ(a, q) dft(a, q) 'γ

∫
∂aφ(a, q)q(W (t)− a) dft(a, q)

+ κ

∫
∂aφ(a, q)q(a∗ − a) dft(a, q)dft(a∗, q∗)

=

∫
∂aφ(a, q)q

{
γ(W (t)− a) + κ(〈a〉 − a)

}
dft(a, q).

We thus obtain the approximating system

1

ε

d

dt
I =〈e−a〉αI(1− I)− βI,

1

ε

d

dt
W =W

(
ρI + σ(a∗δ − 〈a〉) + η(a∗δ −W )

)
,

1

ε

d

dt

∫
φ(a, q) dft(a, q) =

∫
∂aφ(a, q)q

{
γ(W (t)− a) + κ(〈a〉 − a)

}
dft(a, q),

for any φ ∈ Cb([0,+∞) × [0, 1]. By changing time considering τ := εt and letting gτ := ft,
W (τ) := W (t), I(τ) = I(t) we obtain

d

dτ
I =〈e−a〉αI(1− I)− βI,

d

dτ
W =W

(
ρI + σ(a∗δ − 〈a〉) + η(a∗δ −W )

)
,

d

dτ

∫
φ(a, q) dgτ (a, q) =

∫
∂aφ(a, q)q

{
γ(W (t)− a) + κ(〈a〉 − a)

}
dgτ (a, q),

(3.7)

for any φ ∈ Cb([0,+∞)× [0, 1]. We thus expect to well approximate the long time behaviour
of the solution of the original system (3.6) for small ε > 0.

Notice that the equation for gτ is the weak form of the transport equation

(3.8) ∂τgτ + ∂a

(
q
{
γ(W − a) + κ(〈a〉 − a)

}
gτ

)
= 0

so that we can rewrite (3.7) in a compact way as

d

dτ
I = 〈e−a〉αI(1− I)− βI,

d

dτ
W = W

(
ρI + σ(a∗δ − 〈a〉) + η(a∗δ −W )

)
,

∂τgτ + ∂a

(
q
{
γ(W − a) + κ(〈a〉 − a)

}
gτ

)
= 0.

(3.9)

Consider some initial conditions (g0,W (0), I(0)) ∈ P ([0,+∞) × [0, 1]) × [0,+∞) × [0, 1].
A solution in [0, T ∗) is a triple (g,W, I) with g ∈ C([0, T ∗), P ([0,+∞) × [0, 1]), W, I ∈
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C1([0, T ∗),R2) with W (t) ≥ 0 and 0 ≤ I(t) ≤ 1 satisfying the initial condition and solv-
ing (3.7). The solution is global if T ∗ = +∞.

The following result establishes the well-posedness of (3.7).

Teorem 3.2. Consider some initial conditions (g0,W (0), I(0)) ∈ P ([0,+∞)×[0, 1])×[0,+∞)×
[0, 1] and assume that g0 has compact support in [0,+∞)× [0, 1]. Then there exists a unique
global solution (g,W, I) to (3.7). Moreover there exists M,R0 > 0 such that for any t ≥ 0,
W (t) ≤M and gt is supported in [0, R0]× [0, 1].

We justify the approximation of (3.6) by (3.7):

Teorem 3.3. Given initial conditions f0 ∈ P ([0,+∞) × [0, 1]), W0 ≥ 0, I0 ∈ [0, 1] where f0

has compact support, denote (f ε,W ε(t), Iε(t)) the corresponding solution of (3.6) as given by
Theorem 3.1. Let τ = εt and gετ := f εt . Then as ε → 0, the following convergence holds for
any T > 0:

gε → g in C([0, T ], P ([0,+∞)× [0, 1])),

W ε →W in C([0, T ], [0,+∞)),

Iε → I in C([0, T ], [0, 1]),

where (g,W, I) is the unique solution of (3.7) with initial conditions (f0,W0, I0) as given by
Theorem 3.2.

The proof of Theorem 3.1, Theorem 3.2 and Theorem 3.3 are given in Appendix B, C and
D respectively.

3.3. An approximate system. Consider a solution (g,W, I) of system (3.7) as given by
Theorem 3.2.

We first verify that the dynamic of the awareness distribution is contractive. What we
mean by contractive is that conditioned to the value of q, the support of the awareness
distribution gτ |q shrinks to a single point. More precisely, denote f0(q)dq the distribution
of the q parameter in the population, i.e. the projection of gτ on [0, 1]. Thanks to Jirina’s
theorem (see e.g. [19][III.5.9]) there exists a family {gτ |q}q∈[0,1] of probability measures over
[0,+∞), unique in the complement of a set of zero measure foe f0(q)dq, such that for any
function φ : [0,+∞)× [0, 1]→ R integrable for gτ ,∫

φ(a, q) dgτ (a, q) =

∫ 1

0

(∫ +∞

0
φ(a, q) dgτ |q(a)

)
f0(q)dq.

We then have

Proposition 3.4. For any q > 0 in the support of f0(q)dq,

(3.10) diam(conv(supp gτ |q)) ≤ diam(conv(supp g0|q))e
−q(γ+κ)τ

where diam(conv(supp gτ |q)) is the diameter (or length) of the convex hull of the support of
gτ |q.

Proof. Slightly adapting the proof of [24][Step 3.9] to equation (3.8), it can be proved that
gτ |q satisfies

(3.11) ∂τgτ |q + q∂a

({
γ(W (τ)− a) + κ(〈a〉 − a)

}
gτ |q

)
= 0.
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Independently, let us recall that the cumulative distribution function Fτ : R→ [0, 1] of gτ |q,
and its generalized inverse Xτ : [0, 1]→ [0,+∞) are defined by Fτ (x) = gτ |q((−∞, x]) and

(3.12) Xτ (ρ) = inf {x ∈ [0,+∞) s.t. Fτ (x) ≥ ρ}, ρ ∈ [0, 1].

Since gτ is supported in [0, R0] × [0, 1], gτ |q is supported in [0, R0] so that Xτ (ρ) ∈ [0, R0].

Notice also that the segment [Xτ (0+), Xτ (1)] is conv(supp gτ |q), the convex hull of gτ |q. Even-
tually it is a classical property of Xτ that

(3.13)

∫ 1

0
φ(Xτ (r)) dr =

∫ +∞

0
φ(a) dgτ |q(a),

for any φ integrable (to prove this identity it suffices to check the formula for φ of the form
1(−∞,a], a ∈ R). This change of variables allows us to rewrite equation (3.11) as (see e.g.
[24][Prop. 3.1])

∂τXτ (r) = qγ(W −Xτ (r)) + qκ(〈a〉 −Xτ (r)) r ∈ (0, 1).

It follows that for 0 < r < s < 1,

∂τ (Xτ (s)−Xτ (r)) = −q(γ + κ)(Xτ (s)−Xτ (r))

so that

Xτ (s)−Xτ (r) ≤ (X0(s)−X0(r))e−q(γ+κ)τ .

Sending s→ 1 and r → 0− gives (3.10). �

If we suppose that there exists ε0 ∈ (0, 1) such that any non-stubborn agent has q ≥ ε0,
i.e. fNS(q)dq is supported in [ε0, 1], then (3.10) gives

(3.14) diam(conv(supp gτ |q)) ≤ diam(conv(supp g0|q))e
−ε0(γ+κ)τ

for any q in the support of fNS(q)dq. Thus each gτ |q is very concentrated around its mean

aτ (q) =
∫
a dgτ |q(a). It is thus reasonable to replace, for τ � 1 (independently of q), each gτ |q

by the Dirac mass δaτ (q). Notice that (3.11) gives

1

q

d

dτ
aτ (q) = (γ(W (τ)− aτ (q)) + κ(〈a〉 − aτ (q))

We will make a further simplification assuming that aτ (q) is independent of q for τ � 1,
which is motivated by numerical simulations, i.e. aτ (q) = aτ . Then 〈a〉NS = aτ . Recalling
that 〈a〉 = α0〈a〉S + (1− α0)〈a〉NS we obtain

d

dτ
aτ = qγ(W (τ)− aτ ) + qκα0(〈a〉S − 〈a〉NS).

Integrating with respect to fNS0 (q)dq gives

d

dτ
〈a〉NS = 〈q〉

(
γ(W (τ)− 〈a〉NS) + κα0(〈a〉S − 〈a〉NS)

)
= 〈q〉(γ + κα0)

(γW (τ) + κα0〈a〉S

γ + κα0
− 〈a〉NS

)(3.15)

Thus, the non-stubborn agents approximately react to a convex combination of the govern-

ment signal and the opinion of the stubborn agents, which is precisely given by γW (τ)+κα0〈a〉S
γ+κα0

.
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With these approximations, system (3.9) becomes

d

dτ
I =

(
α0〈e−a〉S + (1− α0)e−〈a〉

NS
)
αI(1− I)− βI,

d

dτ
W = W

(
ρI + σ(a∗δ − α0〈a〉S − (1− α0)〈a〉NS) + η(a∗δ −W )

)
,

d

dτ
〈a〉NS = 〈q〉(γ + κα0)

(γW (τ) + κα0〈a〉S

γ + κα0
− 〈a〉NS

)
.

(3.16)

3.4. Impact of stubborn individuals. To qualitatively assess the impact of stubborn in-
dividuals, we suppose that the stubborn agents have all awareness 0, in particular 〈a〉S = 0
and 〈e−a〉S = 1. Then system (3.16) is reduced to

d

dτ
I =

(
α0 + (1− α0)e−〈a〉

NS
)
αI(1− I)− βI,

d

dτ
〈a〉NS = 〈q〉(γ + κα0)

( γW (τ)

γ + κα0
− 〈a〉NS

)
,

d

dτ
W = W

(
ρI + σ(a∗δ − (1− α0)〈a〉NS) + η(a∗δ −W )

)
.

(3.17)

Let us first examine two extreme cases where γ � 1 or κ ≥ 1 i.e. where the social dynamic
evolves on a time scale much faster than those of the disease and of the government.

First if κ � 1 with κ � γ, then, intuitively, harmless social interactions, such as calls or
texts, occur on a much faster time-scale than the infectious interactions. Also, they are more
frequent than the interactions with the government, which is relatively absent from the public
debate.

In that case 〈a〉NS ' 0 so that

d

dτ
I ' αI(1− I)− βI.

We thus recover the standard SIS dynamic and the disease will become endemic.
On the other hand, if γ � 1 with γ � κ, then the government is very active in the public

debate and interactions between individuals and the government are much more frequent than
between individuals. In that case 〈a〉NS 'W and

d

dτ
I =

(
α0 + (1− α0)e−W

)
αI(1− I)− βI,

d

dτ
W = W

(
ρI + σ(a∗δ − (1− α0)W ) + η(a∗δ −W )

)
.

(3.18)

We can see that the endemic state exists if α0α/β > 1, mainly inside the stubborn population,
even if W →∞.

We now turn to the general case. First, up to multiplying the parameters α, β, ρ, σ, η by
〈q〉(γ + κα0) and changing the time-scale, we can assume that 〈q〉(γ + κα0) = 1. We also let
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χ = κ/γ. Thus

d

dτ
I =

(
α0 + (1− α0)e−〈a〉

NS
)
αI(1− I)− βI,

d

dτ
〈a〉NS =

W (τ)

1 + χ
− 〈a〉NS ,

d

dτ
W = W

(
ρI + σ(a∗δ − (1− α0)〈a〉NS) + η(a∗δ −W )

)
.

(3.19)

We can prove the following result:

Teorem 3.5. The system 3.19 has a non endemic equlibrium I = 0, 〈a〉NS =
a∗δ(σ+η)

σ(1−α0)+η(1+χ) ,

W = 〈a〉NS(1 + χ). The equilibrium is locally asymptotically stable if and only if(
α0 + (1− α0)e−〈a〉

NS
)
α− β < 0.

We omit the proof, which follows by computing the Jacobian of the linearized system at the

equilibrium point, and by observing that
(
α0 + (1− α0)e−〈a〉

NS
)
α− β is the only eigenvalue

which can change signs, since the other two eigenvalues are always negative.

4. Conclusion and future works

In this work we analyzed a SIS model coupled with a social dynamics. Individual can
reduce the rate of contagion by taking protection measures, and they adjust their awareness
levels by interacting with other agents or the government. The government send a message
and its intensity depends on some ideal level of awareness, big enough to avoid an endemic
state, and also in the proportion of infected people.

We have modeled it at three levels:

• Agent-based model, where agents interact following the microscopic rules of the SIS
and the social dynamics.
• A mean field approach, by obtaining a system of ordinary differential equations for

the awareness actualization, the government signal and the epidemic dynamics. We
characterized the equilibria and its local stability.
• A kinetic approach, where a Boltzmann-like equation coupled with ordinary differen-

tial equations was derived, together with its approximation with a coupled PDE-ODE
system.

The existence and uniqueness of solutions for the Boltzmann-like equation coupled with
the ordinary differential equations was proved by using a technique due to Bressan [8] (see
also [3]), which has independent interest. Moreover, the grazing limit enable us to prove the
existence of solution for the PDE-ODE system.

In the mean field approach we characterized the equilibria and its local stability. The
theoretical results agree with simulations for the agent-based model.

In future works we plan to analyze the influence of random factors. For instance, the indi-
vidual levels can fluctuate at random, and the measures taken can fail with certain probability.
Also, the signal can be perturbed by some noise, and starting from a random initial condition
for W will generate a transport equation for a probability density f(W )dW , as we studied in
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[25]. Let us remark that in this work a random differential equation with delay was consid-
ered, which makes sense in this context since the forecast of the epidemic has a delay, which
is greater in SEIRS type model, where E stands for exposed, and can include the incubation
period of a disease. In both random and delayed dynamics, the long time behavior of the
system, its equilibria, and their stability, pose a challenge and require different techniques
than those used here.

On the other hand, certain measures of the government like lock-downs or travel restric-
tions were quickly implemented in the last two years, so we can consider that some signals
propagates in a faster time scale than the epidemic, generating a slow-fast dynamics, i.e.,

I ′(t) = 〈e−a〉αI(t)(1− I(t))− βI(t),

εa′i(t) = −γ(ai(t)−W (t)) i = 1, . . . , N,

εW ′(t) = W (t)
(
ρI(t) + σ(a∗ + δ − 〈a〉t) + η(a∗ + δ −W (t))

)
.

(4.1)

We believe that this problem is more interesting in SIR/SEIR models, since the final size
of the epidemic depends on the immediate reduction of the effective reproduction number.
Moreover, the agent-government interaction, acts as a decentralized control, in opposition to
more classical control approaches as in [4, 14].
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Appendix A. Linear stability analysis: proof of Theorem 2.3.

Suppose that α > β. We linearize the system

I ′(t) = 〈e−a〉αI(t)(1− I(t))− βI(t),

a′i(t) = −γ(ai(t)−W (t)), i = 1, . . . , N,

W ′(t) = W (t)
(
ρI(t) + σ(a∗δ − 〈a〉t) + η(a∗δ −W (t))

)
around the equilibria (0, . . . , 0), (1− β

α , 0, . . . , 0) and (0, a∗δ , . . . , a
∗
δ , a
∗
δ).

For (0, ..., 0) we obtain the matrix

A =



α− β 0 . . . . . . 0 0
0 −γ 0 . . . 0 γ
0 0 −γ . . . 0 γ
...

...
...

. . .
...

...
0 0 0 . . . −γ γ
0 0 0 . . . 0 (σ + η)a∗δ


.

Notice that α− β > 0 is a positive eigenvalue so (0, . . . , 0) is unstable.
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Then, by linearizing around (1− β
α , 0, . . . , 0) we get

A =



β − α − β
N (1− β

α) . . . . . . − β
N (1− β

α) 0
0 −γ 0 . . . 0 γ
0 0 −γ . . . 0 γ
...

...
...

. . .
...

...
0 0 0 . . . −γ γ

0 0 0 . . . 0 ρ(1− β
α) + (σ + η)a∗δ


.

Notice that ρ(1− β
α)+(σ+η)a∗δ > 0 is a positive eigenvalue so that (1− β

α , 0, . . . , 0) is unstable.
Finally, by linearizing around the equilibrium P = (0, a∗δ , . . . , a

∗
δ , a
∗
δ) yields the (N + 2) ×

(N + 2) matrix

A =



β(e−δ − 1) 0 . . . . . . 0 0
0 −γ 0 . . . 0 γ
0 0 −γ . . . 0 γ
...

...
...

. . .
...

...
0 0 0 . . . −γ γ

ρa∗δ −σa∗δ
N −σa∗δ

N . . . −σa∗δ
N −ηa∗δ .


.

Looking at the first file of A we see that β(e−δ − 1) is an eigenvalue which is negative if δ > 0
and positive if δ < 0. In particular if δ < 0 then P is unstable. Then, recall that A and its
transpose AT have the same eigenvalues, and

AT + γI =


β(e−δ − 1) + γ 0 . . . 0 ρa∗δ

0 0 . . . 0 −σa∗δ
N

...
...

. . .
...

...

0
... . . . 0 −σa∗δ

N
0 γ . . . γ γ − ηa∗δ .


has rank 3 and so its kernel has dimension (N + 2)− 3 = N − 1. Thus −γ is an eigenvalue of
AT , and A, with multiplicity N − 1. Let us denote λ and µ the two remaining eigenvalues of
AT . Evaluating the trace of AT we obtain

λ+ µ− (N − 1)γ + β(e−δ − 1) =
∑
i

Aii = β(e−δ − 1)− (N − 1)γ − ηa∗δ

which gives

(A.1) λ+ µ = −ηa∗δ .

Next evaluating the determinant of AT we first have

(A.2) det(A) = λµ(−γ)N−1β(e−δ − 1).

On the other hand,

det(A) = β(e−δ − 1) det(B)
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where

B =


−γ 0 . . . 0 −σa∗δ

N

0 −γ . . . 0 −σa∗δ
N

...
...

. . .
...

...

0 0 . . . −γ −σa∗δ
N

γ γ . . . γ −ηa∗δ).

 ∈ R(N+1)×(N+1).

Adding to the last row of B the sum of the first N rows gives

det(B) = det


−γ 0 . . . 0 −σa∗δ

N

0 −γ . . . 0 −σa∗δ
N

...
...

. . .
...

...

0 0 . . . −γ −σa∗δ
N

0 0 . . . 0 −(η + σ)a∗δ .

 = (−1)N+1γN (η + σ)a∗δ .

In view of (A.2) we conclude that

(A.3) λµ = γ(η + σ)a∗δ .

Thus the two last unknown eigenvalues λ, µ of AT satisfy

λ+ µ = −ηa∗δ , λµ = γ(η + σ)a∗δ .

If λ, µ ∈ C\R then µ = λ̄ and so 2Re(λ) = −ηa∗δ . If λ, µ ∈ R then they must have same sign
because λµ > 0 and so are negative because λ+µ < 0. In any case we obtain Re(λ), Re(µ) <
−C with C > 0 independent of N .

Recalling that the N others eigenvalues of AT are β(e−δ − 1) (simple, negative if δ > 0),
and −γ (with mutiplicity N − 1), we conclude that there exists C > 0 independent of N such
that the eigenvalues of A have real part less then −C.

Appendix B. Well-posedness for the ODEs, Boltzmann-like system:
proof of Theorem 3.1.

We denote Mb(R) the space of Borel signed finite measure on R, and Mb,+([0, R]) the
subset of non-negative measures. Recall that the Total Variation (TV) norm and the Bounded
Lipschitz (BL) norm of f ∈Mb(R) are defined by

(B.1) ‖f‖TV = sup
‖φ‖∞≤1

∫
φdf, ‖f‖BL = sup

‖φ‖W1,∞≤1

∫
φdf

where ‖φ‖W 1,∞ := max{‖φ‖∞, Lip(φ)} ≤ 1, being Lip(φ) the Lipschitz constant of φ. We
refer to [13] for general properties of these norms.

We rewrite the system (3.6) as

d

dt
ft = Q[x(t), ft],

x′(t) = F [ft](x(t)),
(B.2)

where x(t) = (x1(t), x2(t)) := (W (t), I(t)), Q : R2 ×Mb(R)→Mb(R) is defined by

(Q[x, f ], φ) =

∫
φ(a+ γ(x1 − a)) df(a)−

∫
φ(a)] df(a) φ ∈ Cb(R),
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and, given f ∈Mb(R), the vector-field F [f ] : R2 → R2 has components

F1[f ](x) = x1(ρx2 − ηx1 − σ〈a〉g + (σ + η)a∗δ),

F2[f ](x) = x2

(
α〈e−a〉f (1− x2)− β

)
,

with 〈a〉f :=
∫ +∞
−∞ a df(a) and 〈e−a〉f :=

∫ +∞
−∞ e−a df(a).

Given f ∈Mb(R), denote x[f ](t) the solution of

d

dt
x[f ](t) = F [ft](x[f ](t))

x[f ](0) = x0

(B.3)

From now on we fix an initial condition x(0) such that x1(0) ≥ 0 and x2(0) ∈ [0, 1] and
then some constant N > 0 such that

(B.4) N > max
{
x1(0),

ρ+ (σ + η)a∗δ
η

}
.

Proposition B.1. Assume that f : [0,+∞) → Mb(R) is continuous for the BL-norm with
ft non-negative and supported in some fixed interval [0, R] for any t ∈ [0, T ]. Then x[f ](t)
exists and belongs to [0, N ]× [0, 1] for any t ∈ R.

Moreover for any 0 ≤ s ≤ t,

(B.5) |x1[f ](t)− x1[f ](s)| ≤ N(ρ+ (σ + η)a∗)(t− s).

Eventually consider another continuous function f̄ : [0,+∞)→Mb,+([0, R]) and fix some
T > 0. Assume that ‖ft‖TV , ‖f̄t‖TV ≤ R for t ∈ [0, T ] (up to increasing the support). Then
for any t,

(B.6) |x[f ](t)− x[f̄ ](t)| ≤ N(Rσ + αeR)teMRt max
0≤s≤t

‖fs − f̄s‖BL

where MR is defined in (B.8).

Proof. Since the functions a 7→ a and a 7→ e−a are bounded Lipschitz in [0, R], the maps
t→ 〈a〉ft and t→ 〈e−a〉ft are continuous. Thus the solution x(t) := x[f ](t) of (B.3) exists on
some interval around 0.

Since F1[g](0, x2) = F2[g](x1, 0) = F2[g](x1, 1) = 0 for any g ∈ Mb(R) and x ∈ R2, and
x1(0) ≥ 0, x2(0) ∈ [0, 1], we have x1(t) ≥ 0 and x2(t) ∈ [0, 1]. Since f is non-negative and
supported in [0,+∞), we have 〈a〉f ≥ 0 so that

x′1(t) ≤ γx1(t)
(ρ+ (σ + η)a∗δ

η
− x1

)
.

Recalling the definition of N , it follows that x1(t) ≤ N for any t. Thus x(t) stays in the
compact [0, N ]× [0, 1] and so exists for any t ∈ R.

To prove (B.5), notice that for any τ ≥ 0, |F1[fτ ](x[f ](τ))| ≤ N(ρ + (σ + η)a∗δ). Then
writing

x1[f ](t)− x1[f̄ ](s) =

∫ t

s
F1[fτ ](x[f ](τ))

yields the result.
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We eventually prove (B.6). For ease of notation we let x(t) := x[f ](t) and x̄(t) := x[f̄ ](t).
Then

x(t)− x̄(t) =

∫ t

0
F [fs](x(s))− F [f̄s](x̄(s)) ds.

Using Proposition B.2 below (with A = N) we obtain for t ∈ [0, T ] that

|x(t)− x̄(t)| ≤
∫ t

0
MR|x(s)− x̄(s)|+N(Rσ + αeR)‖fs − f̄s‖BL ds

≤ N(Rσ + αeR)t max
0≤s≤t

‖fs − f̄s‖BL +MR

∫ t

0
|x(s)− x̄(s)| ds.

We deduce (B.6) by applying Gronwall inequality.
�

In the proof we used the following result:

Proposition B.2. For any A > 0, any x, x̄ ∈ B̄(0, A) and any f, f̄ ∈Mb([−R,R]) such that
‖f‖TV , ‖f̄‖TV ≤ R, we have

(B.7) |F [f ](x)− F [f̄ ](x̄)| ≤MR|x− x̄|+A(Rσ + αeR)‖f − f̄‖BL
(R2 is endowed with the norm ‖.‖1) with

(B.8) MR := sup
g
‖∇F [g]‖L∞(B̄(0,A))

where the supremum is taken over all g ∈Mb([−R,R]) such that ‖g‖TV ≤ R.

Notice that for any such g, |〈a〉g| ≤ R2 and |〈e−a〉g| ≤ ReR.

Proof. We write

|F [f ](x)− F [f̄ ](x̄)| ≤ |F [f ](x)− F [f̄ ](x)|+ |F [f̄ ](x)− F [f̄ ](x̄)|.
The second term in the right hand side is less than |∇F [f̄ ]‖L∞(B̄(0,A))|x − x̄| ≤ MR|x − x̄|.
Concerning the first term notice that the maps a 7→ a and a 7→ e−a are bounded Lipschitz in
[−R,R]. Thus

|F1[f ](x)− F1[f̄ ](x)| = |x1|σ
∣∣∣ ∫ R

−R
a d(f̄ − f)

∣∣∣
≤ AσR‖f̄ − f‖BL,

and

|F2[f ](x)− F2[f̄ ](x)| = |x2|α
∣∣∣ ∫ R

−R
e−a d(f̄ − f)

∣∣∣
≤ AαeR‖f̄ − f‖BL.

We deduce (B.7). �

We can now rewrite (B.2) as

(B.9)
d

dt
ft = Q[x[f ](t), ft] =: Q̄[ft].

We will prove the existence of a solution to this equation using Bressan’s idea [8] as exposed
in [3].
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We first recall the existence and uniqueness result proved in [3][Theorem 6.1] which deals
with the equation

∂tf = Q̃[f ] in [0, T )× E(B.10)

f(0) = f0 ∈ S(B.11)

where E is a Banach space, S is a closed bounded convex subset of E, and

Q̃ : C([0, T ], S)→ C([0, T ], E)

is a causal operator in the sense that Q̃[f ](t) = Q̃[f1[0,t]](t) for any f ∈ C([0, T ], E).
We assume the following conditions on Q:

• Hölder continuity: for any f, g ∈ C([0, T ], S) and any times 0 ≤ s ≤ t ≤ T , there
exists β ∈ (0, 1) such that

(B.12) ‖Q̃[f ](t)− Q̃[g](s)‖ ≤ C
(

max
0≤τ≤s

‖f(τ)− g(τ)‖β + ‖f(t)− g(s)‖β + |t− s|β
)

• Sub-tangent condition: for any f ∈ C([0, T ], S),

(B.13) lim inf
h→0+

1

h
sup

0≤t≤T
{dist(f(t) + hQ̃[f ](t), S)} = 0

• One-sided Lipschitz condition: for any f, g ∈ C([0, T ], S) and any t ∈ [0, T ],

(B.14)

∫ t

0

[
f(s)− g(s), Q̃[f ](s)− Q̃[g](s)

]
ds ≤ L

∫ t

0
‖f(s)− g(s)‖ ds

where [Φ, φ] := limh→0−
1
h [‖Φ + hΦ‖ − ‖Φ‖].

Under these assumptions it is proved in [3][Theorem 6.1] that Eq. (B.10) has a unique solution
in C([0, T ), S) ∩ C1((0, T ), E).

Using this result we can prove the existence of a unique solution to (B.9). Let R =
max{R0, N} where R0 is such that supp f0 ⊂ [−R0, R0]. We take

E = {f ∈Mb([0,+∞]) : suppf ⊂ [0, R], ‖f‖TV ≤ 2},

and

S = {f ∈ E, f is a probability measure}.
We endow S with the Bounded Lipschitz (BL) norm defined in (B.1). When endowed with
the BL norm, E is complete and S is a closed convex subset of E.

The operator

Q̃[f ]t := Q[x[f ](t), ft]

is causal and satisfies the following properties:

Proposition B.3. The operator Q̃ satisfies the following properties:

(i) For any f, g ∈ C([0, T ], S) and any 0 ≤ s ≤ t,

|Q̃[f ](t)− Q̃[g](s)| ≤ C
(

max
0≤τ≤s

‖fτ − gτ‖BL + ‖ft − fs‖BL + |t− s|
)

where C depends only on N,R and the modelling parameters ρ, σ, γ, a∗.
(ii) For any f ∈ C([0, T ], S), any t ∈ [0, T ] and any h ∈ [0, 1], ft + hQ̃[f ]t ∈ S.
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This Proposition will be a consequence of some simple properties of Q[x, f ] for x ∈ R2,
f ∈Mb(R). It will be convenient to write Q[x, f ] as

Q[x, f ] = Q+[x, f ]− f

where Q+[x, f ] ∈Mb(R) is defined as

(B.15) (Q+[x, f ], φ) =

∫
φ((1− γ)a+ γx1) df(a) φ ∈ Cb(R).

Proposition B.4. The following properties hold:

(i) if f ≥ 0 then Q+[x, f ] is a non-negative measure.

(ii) if supp(f) ⊂ [0, R̂] and x1 ∈ [0, R̃] then Q+[x, f ] is supported in [0, R̄] with R̄ =

max{R̂, R̃}.
(iii) For any x, x̄ ∈ R2 and any f, f̄ ∈ P (R), it holds that

(B.16) ‖Q[x, f ]−Q[x̄, f̄ ]‖BL ≤ γ|x1 − x̄1|+ 2‖f − f̄‖BL.

Proof. If f ≥ 0 then for any non-negative φ, (Q+[x, f ], φ) ≥ 0 in view of (B.15). We deduce
(i).

Concerning (ii), just remark that for any a ∈ supp(f) and any γ ∈ [0, 1], we have (1−γ)a+
γx1 ∈ [0, R̄]. Thus (Q+[x, f ], φ) = 0 if φ has support in R\[0, R̄]. This proves (ii).

We eventually prove (B.16). For any φ ∈W 1,∞(R) with norm ≤ 1 we have

(Q[x, f ]−Q[x̄, f̄ ], φ) = (Q+[x, f ]−Q+[x̄, f̄ ], φ) + (f̄ − f, φ)

with |(f̄ − f, φ)| ≤ ‖f̄ − f‖BL and

(Q+[x, f ]−Q+[x̄, f̄ ], φ) =

∫
φ((1− γ)a+ γx1)− φ((1− γ)a+ γx̄1) df(a)

+

∫
φ((1− γ)a+ γx̄1) d(f − f̄)(a)

≤ γ|x1 − x̄1|+ ‖f̄ − f‖BL

In the last inequality, we used that φ is 1-Lipschitz to bound the first integral, and we bound
the second integral by ‖f̄ −f‖BL times the W 1,∞-norm of the function a→ φ((1−γ)a+γx̄1)
which is less than 1. �

We can now prove Proposition B.3.

Proof of Proposition B.3. We prove (i) by writing

|Q̃[f ](t)− Q̃[g](s)| ≤ |Q̃[f ](t)− Q̃[f ](s)|+ |Q̃[f ](s)− Q̃[g](s)|
= |Q[x[f ](t), ft]−Q[x[f ](s), fs]|+ |Q[x[f ](s), fs]−Q[x[g](s), gs]|
=: I + II.

In view of (B.16), (B.5) and (B.6), we can bound I and II as follow:

I ≤ γ|x1[f ](t)− x1[f ](s)|+ 2‖ft − fs‖BL
≤ γN(ρ+ (σ + η)a∗δ)(t− s) + 2‖ft − fs‖BL.
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and

II ≤ γ|x1[f ](s)− x1[g](s)|+ 2‖fs − gs‖BL
≤ γNRσseMRs max

0≤τ≤s
‖fτ − gτ‖BL + 2‖ft − fs‖BL.

We prove (ii). Using (B.15) we can write ft + hQ̃[f ]t = (1− h)ft + hQ̃+[f ]t with Q̃+[f ]t =

Q+[x[f ](t), ft]. Since ft is a probabilty measure, Q̃+[f ]t is a non-negative measure and so is

(1− h)ft + hQ̃+[f ]t for h ∈ [0, 1]. Moreover

(ft + hQ̃[f ]t, 1) = (1− h)(ft, 1) + h(Q+[x[f ](t), ft], 1) = (ft, 1) = 1.

Thus ft + hQ̃[f ]t is a probability measure. In particular its TV norm is 1.

It remains to prove that ft + hQ̃[f ]t is supported in [0, R]. Since ft ∈ E, it is supported in
[0, R]. We show that Q+[x[f ](t), ft] is supported in [0, R] as well. Recall that x1[f ](t) ∈ [0, N ]
by Proposition B.1. According to what we said just before beginning the proof, Q+[x[f ](t), ft]
is supported in [0, R̄] with R̄ = max{N,R} i.e. R̄ = R by the definition of R.

�

We can now conclude the proof of the existence of a unique solution to (B.9) in [0, T ].

According to Proposition B.3, the operator Q̃ satisfies the three hipothesis in [3][Theorem
6.1]. More precisely, (i) and (ii) of Proposition B.3 gives respectively the Holder condition
(B.12) with β = 1 and the sub-tangent condition (B.13). Moreover it is easy to see that
the one-sided Lipschitz condition (B.14) automatically holds when the Holder condition holds
with β = 1. Since T is arbitrary, we obtain existence and uniqueness of a global solution.

Appendix C. Proof of Theorem 3.2.

We rewrite the system (3.7) as

∂tgt + ∂a(v[x(t)](a)gt) = 0,

x′(t) = F [gt](x(t)),
(C.1)

where

x(t) = (x1(t), x2(t)) := (W (t), I(t)),

v[x(t)](a) = x1(t)− a,

and, given g ∈ P (R), the vector-field F [g] : R2 → R2 has components

F1[g](x) = x1(ρx2 − ηx1 − σ〈a〉g + (σ + η)a∗δ),

F2[g](x) = x2

(
α〈e−a〉g(1− x2)− β

)
,

with 〈a〉g :=
∫ +∞
−∞ a dg(a) and 〈e−a〉g :=

∫ +∞
−∞ e−a dg(a).

We fix initial conditions x0 = (W (0), I(0)) ∈ R2 and g0 ∈ P (R) with compact support. Let
R0 > 0 be such that supp(g0) ⊂ [−R0, R0].

We want to rewrite (C.1) as a fixed point problem. Given some T > 0, to be chosen later,
consider the space

XT = C([0, T ], P (R))× C([0, T ],R2)
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endowed with the sup-norm. Since P (R) is complete, XT is complete. Then consider the set
YT consisting of the pairs (g, x) ∈ XT such that

g(0) = g0, x(0) = x0,

|x(t)− x0| ≤ 1 t ∈ [0, T ],

supp(gt) ⊂ [−2R0, 2R0] t ∈ [0, T ].

Then YT is complete as a closed subset of XT .
Given (g, x) ∈ YT , define Γ(g, x) : [0, T ]→Mb(R)× R2 by

Γ(g, x)t = (Γ1(g, x)t,Γ
2(g, x)t) :=

(
T
v[xt]
t ]g0, x0 +

∫ t

0
F [gs](x(s)) ds

)
where T

v[xt]
t is the flow of v[xt] i.e. T

v[xt]
t = T

v[xt]
0,t with, for any a ≥ 0 and any t ≥ s ≥ 0,

d

dt
T
v[xt]
s,t (a) = v[xt](T

v[xt]
s,t (a)), t > s, T v[xt]

s,s (a) = a.

Then for a small enough T , (g, x) solves (C.1) in [0, T ] with initial conditions (g0, x0) if and
only if (g, x) ∈ YT and (g, x) is a fixed-point of Γ.

We prove the existence of such a fixed point by applying the classical Banach fixed-point
theorem to Γ in YT . We thus need to show that (i) Γ(YT ) ⊂ YT and also that (ii) Γ is a strict
contraction.

Fix some (g, x) ∈ YT . Since for t ∈ [0, T ], |x(t)| ≤ 1+|x0| and gt is supported in [−2R0, 2R0],
we have max0≤s≤T |F [gs](x(s))| ≤ C with C = C(|x0|, R0), and then Γ2(g, x)t is continuous
in t ∈ [0, T ]. Moreover since v[xt] is bounded and globally Lipschitz in [0, T ], the map

t → T
v[xt]
s,t (a) is well-defined and continuous in [0, T ] for any a ∈ R. Thus for any φ ∈

Cb(R), (Γ1(g, x)t, φ) =
∫
R φ(T

v[xt]
t (a)) dg0(a) is continuous in t by the Dominated Convergence

Theorem. So far we proved that Γ(g, x) ∈ XT . Moreover Γ(g, x)t=0 = (g0, x0) obviously. Also

|Γ1(g, x)t − x0| ≤
∫ T

0 F [gs](x(s)) ds ≤ CT which is less than 1 choosing T small enough
depending on |x0| and R0. Eventually since for any z ∈ R and any s ∈ [0, T ],

|v[x(s)](z)| ≤ |x1(s)|+ |z| ≤ 1 + |x0|+ |z|,

we have

|T v[xt]
t (a)| ≤ |a|+

∫ t

0
|v[xs](T

v[xs]
s (a))| ds ≤ |a|+ T (1 + |x0|) +

∫ t

0
|T v[xs]
s (a)| ds.

Using Gronwall inequality we obtain

|T v[xt]
t (a)| ≤ [|a|+ T (1 + |x0|)]eT .

If a ∈ [−R0, R0] we thus have |T v[xt]
t (a)| ≤ 2R0 choosing T small enough depending only on

|x0| and R0. Now for any smooth function φ with compact suuport in {|a| > 2R0} we deduce

(Γ1(g, x)t, φ) =

∫ R0

−R0

φ(T
v[xt]
t (a)) dg0(a) = 0.

We conclude that Γ1(g, x)t is supported in [−2R0, 2R0] for any t ∈ [0, T ]. We thus proved
that we can choose T small enough depending only on |x0| and R0 such that Γ(YT ) ⊂ YT .
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We now verify that Γ is a strict contraction for T small. First notice that there exist
constants L depending only on R0 and |x0| such that for any g, ḡ ∈ P (R) supported in
[−R0, R0] and any x, x̄ ∈ B(x0, 1), there hold

|F [g](x)− F [g](x̄)| ≤ L1|x− x̄|,
|F [g](x̄)− F [ḡ](x̄)| ≤ L2W1(g, ḡ).

The first inequality is clear. For the second one notice that

|F1[g](x̄)− F1[ḡ](x̄)| = σ|x̄1|
∣∣∣ ∫ 2R0

−2R0

a d(g − ḡ)
∣∣∣ ≤ σ(1 + |x0|)W1(g, ḡ).

The same kind of inequality holds for F2. As a consequence of these two inequalities we obtain

|F [g](x)− F [ḡ](x̄)| ≤ L3

(
|x− x̄|+W1(g, ḡ)

)
with L3 = max{L1, L2}. Given (g, x), (ḡ, x̄) ∈ YT , we then deduce from this inequality that
for any t ∈ [0, T ],

|Γ2(g, x)t − Γ2(ḡ, x̄)t| ≤ L3

∫ t

0
|x(s)− x̄(s)|+W1(gs, ḡs) ds

≤ L3T (‖x− x̄‖∞ + max
0≤t≤T

W1(gt, ḡt))
(C.2)

Moreover denoting Tt := T
v[xt]
t and T̄t := T

v[x̄t]
t we have

|Tt(a)− T̄t(a)| ≤
∫ t

0
|v[x(s)](Tt(a))− v[x̄(s)](T̄t(a))| ds

≤
∫ t

0
|x1(s)− x̄1(s)|+ |Tt(a)− T̄t(a)| ds

so that by Gronwall inequality

|Tt(a)− T̄t(a)| ≤ T‖x− x̄‖∞et.
Then for any 1-Lipschitz function φ and any a ∈ R, we obtain

|φ(Tt(a))− φ(T̄t(a))| ≤ |Tt(a)− T̄t(a)| ≤ T‖x− x̄‖∞et.
and then

(Γ1(g, x)t − Γ1(ḡ, x̄)t, φ) ≤
∫ +∞

−∞
φ(Tt(a))− φ(T̄t(a)) dg0(a) ≤ T‖x− x̄‖∞et

Taking the supremum over all such φ we obtain

max
0≤t≤T

W1(Γ1(g, x)t,Γ
1(ḡ, x̄)t) ≤ TeT ‖x− x̄‖∞.

With (C.2) we eventually obtain

‖Γ(g, x)− Γ(ḡ, x̄)‖XT = max
0≤t≤T

W1(Γ1(g, x)t,Γ
1(ḡ, x̄)t) + max

0≤t≤T
|Γ1(g, x)t − Γ1(ḡ, x̄)t|

≤ T (eT + L3)‖x− x̄‖∞ + L3T max
0≤t≤T

W1(gt, ḡt))

We can thus choose T small enough depending only on L3, and so only on |x0| and R0, such
that Γ is a strict contraction.
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Applying the Banach fixed point Theorem we obtain the existence of a unique fixed point
of Γ in YT and thus of a unique solution to (C.1) in [0, T ]. Iterating this argument we obtain
a unique maximal solution (g, x) defined on a maximal interval time [0, T ∗) with T ∗ ≤ ∞.

Now let us assume that g0 is supported in [0,+∞) and that x(0) = (W (0), I(0)) ∈ [0,+∞)×
[0, 1]. We will prove that T ∗ = +∞, gt is supported in a fixed compact of [0,+∞), x1 is non-
negative and bounded, and x2(t) ∈ [0, 1], thus concluding the proof of Theorem 3.2.

Since F1[g](0, x2) = F2[g](x1, 0) = F2[g](x1, 1) = 0 for any g, x1, x2, and x1(0) ≥ 0, x2(0) ∈
[0, 1], we have x1(t) ≥ 0 and x2(t) ∈ [0, 1]. Using that x1(t) ≥ 0, we have for any a ≥ 0 that
Tt(a) ≥ 0. Indeed the r.h.s. of d

dtTt(a) = x1(t)− Tt(a) is non-negative when Tt(a) = 0. Thus
if g0 is supported in [0,+∞) we deduce that gt = Tt]g0 is also supported in [0,+∞). We can
now bound x1. Since x2 ≤ 1 and 〈a〉gt ≥ 0, we can write

x′1(t) ≤ γx1(t)
(ρ+ (σ + η)a∗δ

η
− x1

)
.

Taking some M > max{x1(0), ρ+(σ+γ)a∗

γ }, it follows that x1(t) ≤ M . As a consequence gt
is supported in a fixed compact for all t. Indeed Let R0 be such that supp(g0) ⊂ [0, R0]
with R0 > M . Then for any a ∈ [0, R0], Tt(a) ≤ R0 for any t since the r.h.s. of d

dtTt(a) =
x1(t)−Tt(a) is less than M−Tt(a) which is ≤ 0 when Tt(a) = R0. Thus gt = Tt]g0 is supported
in [0, R0] for any t. Eventually since gt = Tt]g0 is supported in [0, R0] and x(t) ∈ [0,M ]×[0, 1],
we have T ∗ = +∞ i.e. the solution (g, x) is defined for all t ≥ 0.

Appendix D. Proof of Theorem 3.3.

We fix an initial condition (f0,W0, I0) such that f0 ∈ P ([0,+∞) has compact support,
W0 ≥ 0 and I0 ∈ [0, 1]. Denote (fγt ,W

γ(t), Iγ(t)) the solution of

d

dt

∫
φ(a) dft(a) =

∫
[φ(a′)− φ(a)] dfγt (a) φ ∈ Cb([0,+∞)),

1

γ

d

dt
W γ(t) = W (t)

(
ρIγ(t) + σ(a∗δ − 〈a〉)t + η(a∗δ −W γ(t))

)
,

1

γ

d

dt
Iγ(t) = α〈e−a〉Iγ(t)(1− Iγ(t))− βIγ(t).

(D.1)

where a′ = a+ γ(W γ(t)− a), 〈a〉 =
∫
a dfγt and 〈e−a〉 =

∫
e−a dfγt . Since

1

γ

d

dt
W γ(t) ≤ ηW γ(t)

(ρ+ (σ + η)

η
a∗δ −W γ(t))

)
we have 0 ≤ W γ(t) ≤ max{W0,

ρ+(σ+η)
η }. We can thus take R ≥ 0 such that f0 is supported

in [0, R] and W γ(t) ∈ [0, R]. As in the proof of Theorem 3.2 it follows that fγt is supported
in [0, R] for any t ≥ 0 and any γ.

Given φ ∈ C2([0, R]), we approximate φ(a′)− φ(a) using Taylor formula by

φ(a′)− φ(a) = φ′(a)(a′ − a) +
1

2
φ′′(ξ)(a− a′)2

= φ′(a)γ(W γ(t)− a) +
1

2
φ′′(ξ)γ2(W γ(t)− a)2,
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where ξ = θa+ (1− θ)a′ for some θ ∈ (0, 1). We thus obtain

(D.2)
1

γ

d

dt

∫
φ(a) dfγt (a) =

∫
φ′(a)(W γ(t)− a) dfγt (a) +Rγ(t),

where

Rγ(t) =
γ

2

∫
φ′′(ξ)(W γ(t)− a)2 dfγt (a).

We bound Rγ(t) by

|Rγ(t)| ≤ γ‖φ′′‖∞
∫
W γ(t)2 + a2 dfγt (a) ≤ 2γ‖φ′′‖∞R2,

where we used that W γ(t) ∈ [0, R] and fγt is supported in [0, R] for any t ≥ 0 and any γ.

Letting τ = γt and gγτ := fγt , W̃ γ(τ) = W γ(t) and Ĩγ(τ) = Iγ(t), we thus obtain

d

dτ

∫
φ(a) dgγτ (a) =

∫
φ′(a)(W̃ γ(t)− a) dgγτ (a) +Rγ(τ/γ).

Integrating between s and t with s < t gives∫
φd(gγt − gγs ) ≤

∫ t

s

∫
φ′(a)(W̃ γ(t)− a) dgγτ (a)dτ + 2γ‖φ′′‖∞R2(t− s).

We denote X = C2([0, R]) with the usual norm ‖φ‖X = ‖φ‖∞ + ‖φ′‖∞ + ‖φ′′‖∞, and define
the norm ‖µ‖ of µ ∈ P ([0, R]) by

(D.3) ‖µ‖ := sup
φ∈X,‖φ‖X≤1

∫
φdµ.

Thus for any γ > 0 and any s, t ≥ 0,

(D.4) ‖gγt − gγs ‖ ≤ C|t− s| C = 2R(1 + 2γR).

Independently,

d

dτ
W̃ γ(τ) = W̃ γ(τ)

(
ρĨγ(τ) + σ(a∗δ − 〈a〉) + η(a∗δ − W̃ γ(τ))

)
,

d

dτ
Ĩγ(t) = α〈e−a〉Ĩγ(τ)(1− Ĩγ(τ))− βĨγ(τ),

(D.5)

with the slight abuse of notation 〈a〉 =
∫
a dgγτ and 〈e−a〉 =

∫
e−a dgγτ . Since W̃ γ(τ) ∈ [0, R]

and Ĩγ(τ) ∈ [0, 1] for any γ and any τ ≥ 0, we have∣∣∣ d
dτ
W̃ γ(τ)

∣∣∣ ≤ W̃ γ(τ)(ρ+ σ + η) ≤ R(ρ+ σ + η)

and ∣∣∣ d
dτ
Ĩγ(τ)

∣∣∣ ≤ α+ β.

Thus there exists C > 0 depending only on f0, ρ, σ, η, α, β such that for any s, t ≥ 0,

|W̃ γ(t)− W̃ γ(s)| ≤ C|t− s|,

|Ĩγ(t)− W̃ γ(s)| ≤ C|t− s|.
(D.6)

We endow X̃ := P ([0, R]) × [0, R] × [0, 1] with the norm ‖(f, w, i)‖X̃ := ‖f‖X + w +
i. It follows from [17][Lemma 5.3 and Corollary 5.5] that the norm ‖.‖ defined in (D.3)

induces the weak topology on P ([0, R]. Thus (X̃, ‖.‖X̃) is compact. Moreover (D.4) and
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(D.6) shows that the bounded sequence (gγ , W̃ γ , Ĩγ)γ is uniformly equicontinuous. Hence, the
Arzela-Ascoli Theorem, together with a diagonal argument, ensure the existence of (g,W, I)
with g ∈ C([0,∞);P ([0, R])), W ∈ C([0,∞); [0, R]), I ∈ C([0,∞); [0, 1]) and a subsequence

(γn)n converging to 0 such that (gγn , W̃ γn , Ĩγn)n converges to (g,W, I) in C([0, T ];P ([0, R]))×
C([0, T ]; [0, R])× C([0, T ]; [0, 1]) for any T > 0.

It remains to show that (g,W, I) is a solution with initial conditions (f0,W0, I0). For ease
of notation we still write γ instead of γn. Given τ ≥ 0 and φ ∈ C1([0, R]), we have∫ R

0
φdgγτ −

∫
φdf0 =

∫ τ

0

∫ R

0
φ′(a)(W̃ γ(t)− a) dgγt (a)dt+O(γ),

W̃ γ(τ)−W0 =

∫ τ

0
W̃ γ(t)

(
ρĨγ(t) + σ(a∗δ − 〈a〉) + η(a∗δ − W̃ γ(t))

)
dt,

Ĩγ(τ)− I0 =

∫ τ

0
α〈e−a〉Ĩγ(t)(1− Ĩγ(t))− βĨγ(t) dt.

Since a and e−a are continuous function on [0, R], we have 〈a〉 =
∫ R

0 a dgγτ →
∫ R

0 a dgτ and

〈e−a〉 =
∫ R

0 e−a dgγτ →
∫ R

0 e−a dgτ as γ → 0. We can then pass to the limit γ → 0 in the

equation for W̃ γ and Ĩγ . Moreover for any t ≥ 0,∫ R

0
φ′(a)(W̃ γ(t)− a) dgγt (a) =

∫ R

0
φ′(a)(W (t)− a) dgγt (a) + (W̃ γ(t)−W (t))

∫ R

0
φ′(a) dgγt (a)

→
∫ R

0
φ′(a)(W (t)− a) dgt(a)

with ∣∣∣ ∫ R

0
φ′(a)(W̃ γ(t)− a) dgγt (a)

∣∣∣ ≤ ‖φ′‖∞R2.

We can thus pass to the limit using the Dominated Convergence Theorem in the equation for
gγ . We eventually obtain∫ R

0
φdgτ −

∫
φdf0 =

∫ τ

0

∫ R

0
φ′(a)(W (t)− a) dgt(a)dt,

W (τ)−W0 =

∫ τ

0
W (t)

(
ρI(t) + σ(a∗ − 〈a〉) + η(a∗ −W (t))

)
dt,

I(τ)− I0 =

∫ τ

0
α〈e−a〉I(t)(1− I(t))− βI(t).

This concludes the proof of Theorem 3.3.
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